

Our Data Migration
Framework
Key Concepts Explained

Abstract

An introduction to the basic concepts of the Migration Framework and how the framework
targets complex data migration projects.

86-90 Paul Street - London EC2A 4NE - United Kingdom Hopp Tech Ltd.
info@hopp.tech

https://goo.gl/maps/8LX4HiKqhJD3s8b57

 2 Our Data Migration Framework

1. About this document

Hopp (hopp) is a collection of components handling the process of complex data migrations. The
framework supports all aspects of data migration, from the mapping and implementation of mapping
rules, through the actual execution of the data migration right through to the surfacing of the migration
results including support for a workflow for tracking and resolving events and problems occurring during
the migration.

The purpose of this document is to provide a basic understanding of the key concepts behind the
framework, how the framework functions, how the different framework components play their roles in
the data migration process, and finally how they integrate internally as well in the external context of
where the data migration takes place.

The document should provide the reader with a good, overall understanding of the framework and how
this framework is a comprehensive solution targeted specifically for data migration projects.

The mass of detail can be daunting, and another aim of this document is to provide just enough
information on each component to facilitate an overall understanding of the processes and functions
involved and in this manner, prepare the reader to further explore other aspects and documents of the
framework.

Hopp is a meticulously designed suite of components engineered to manage the intricacies of complex
data migration projects. This sophisticated framework is engineered to support every facet of the data
migration lifecycle. It encompasses tasks ranging from the creation and application of mapping rules to
the actual execution of data migrations, concluding with the presentation of migration results. Hopp
also incorporates a robust workflow mechanism for the monitoring and resolution of events and issues
that may arise during the migration process.

The primary objective of this document is to furnish readers with a foundational comprehension of the
fundamental principles underpinning the Hopp framework. We delve into how the framework operates,
the distinct roles played by its various components within the data migration process, and how these
components interact both internally and within the broader external context of data migration scenarios.

This document is intended to equip readers with a comprehensive grasp of the Hopp framework,
highlighting its suitability as a holistic solution tailored explicitly for data migration projects.

Recognizing the potential overwhelmed by the sheer volume of technical details, this document strikes
a balance by offering sufficient insight into each component. The goal is to provide an overarching
understanding of the processes and functionalities involved, preparing readers for further exploration of
additional framework aspects and related documentation.

2. Key concepts

When planning and executing complex data migrations several key issues often prove challenging. The
key concept of hopp directly addresses these main concerns, providing robust and complete support
that greatly mitigates or indeed eliminates them.

 3 Our Data Migration Framework

Business Objects It is valuable to guard the notion that the data being migrated in most cases
in fact represents express business concepts that must remain intact after
the data migration.

Mapping and
implementation

The mapping of the source data to the target data must be specified and
maintained and the functionality to perform the migration in accordance to
the specification must be developed and maintained.

Execution and in-time
assessment

The migration must be executed, the quality of the migration result must be
documented, and – in case of unacceptable migration incidents/events – it
must be possible to re-execute part or all of the migration.

Business Objects

A tendency when working with data migration is to focus on how to transform the source data into the
target data. Reasonably so, as this is the basic task at hand. However, this inherently risks the project
evolving into a technical exercise where the mass of data is moved forward through migration steps
governed by technical requirements born out of the way the migration has been implemented - without
any clear link to the business concepts represented by the data flowing through the migration.

If on the other hand, the coupling to key business concepts remains intact during the mapping and
execution of the data migration, valuable and indeed required knowledge residing with people with deep
business-related knowledge can be leveraged throughout the lifetime of the migration project.

All elements of hopp are centered on Business Objects. A business object represents all the data
flowing through the migration-related to one specific item in the business being migrated. Examples of
business objects of course depend on the nature of this business, but could be Customer, Account,
Policy, Patent, Mortgage, etc. Business Objects are organized in hierarchies providing a set of root
business objects each with a recursive hierarchy of sub-business objects.

Business Objects are the basis for the mapping, for the actual iterations of the migration executions,
and for the surfacing of the migration iteration results and events. When executing, every business
object passes through the migration steps as one unit.

Business Objects is a basic concept that makes Hopp unique. The benefits are many and varied.

• Business Objects provide a common reference for all users working on and related to
the migration project. Business experts, technical users, testers, project managers,
etc. alike speak the same language.

• The root business objects and their sub-hierarchies provide a natural partitioning of the
task of specifying the mapping. This partitioning is valuable in terms of supporting an

 4 Our Data Migration Framework

iterative and agile process as the project progresses and is equally valuable in terms of
measuring mapping progress.

• It is possible to start executing the migration very early when just a small part of any
business object has been mapped. An iterative, agile, and incremental process is
supported from the start of any data migration project.

• Migration execution can be iterated with complete granularity. For instance, it is
possible to point out one specific business object and migrate just that one or iterate all
business objects that generated a given event.

• The mapping of business objects includes relationships between business objects.
During execution, this information automatically assures the migration of business
objects in the correct sequence.

• When surfacing the migration result for a given business object, all the events
generated when migrating the business object are presented as well as the complete
set of data for the business object for each step in the migration.

When dealing with data migration, there is a common tendency to concentrate primarily on the
mechanics of transforming source data into the desired target format. This emphasis is entirely justified,
as it constitutes the fundamental task at hand. However, such a focus can inadvertently lead the project
down a purely technical path, where data is moved through migration steps dictated solely by technical
requirements, with little connection to the underlying business concepts encapsulated within the data
undergoing migration.

On the contrary, if we ensure that the linkage to crucial business concepts remains intact throughout
the mapping and execution phases of data migration, we unlock valuable knowledge resources held by
individuals with deep business acumen. This alignment is indispensable for the entire lifecycle of the
migration project.

Within the Hopp framework, every facet is centered around the concept of "Business Objects." A
business object represents all the data belonging to a specific entity within the business undergoing
migration. The exact nature of these business objects depends on the specific business domain but
may include entities like Customers, Accounts, Policies, Patents, Mortgages, and more. These
Business Objects are structured in hierarchical relationships, forming a hierarchy of sub-business
objects under each root business object.

Business Objects serve as the foundation for various aspects of the migration process, including
mapping, execution, and the presentation of migration iteration results and events. During execution,
each business object is treated as a single unit, moving through the migration steps cohesively.

The concept of Business Objects is a fundamental differentiator that sets Hopp apart, offering
numerous and diverse benefits:

 5 Our Data Migration Framework

Common Reference Business Objects provide a universal reference point for all stakeholders
involved in the migration project, fostering effective communication among
business experts, technical users, testers, and project managers.

Natural Task
Partitioning

The root business objects and their sub-hierarchies naturally partition the
process of specifying mapping rules. This division facilitates an iterative
and agile approach as the project evolves and aids in tracking mapping
progress.

Early Migration Start Migration execution can commence early in the project, even when only a
portion of a business object has been mapped. This supports an iterative,
agile, and incremental approach right from the project's inception.

Granular Iteration Migration execution can be iterated with precision. Specific business
objects can be singled out for migration, or all business objects associated
with a particular event can be iteratively processed.

Relationship
Preservation

The mapping of business objects includes inherent relationships between
them. During execution, this information ensures that business objects are
migrated in the correct sequence.

Comprehensive Result
Presentation

When presenting migration results for a given business object, all events
generated during the migration of that business object are displayed, along
with a complete dataset for the business object at each migration step.

In essence, the concept of Business Objects is central to Hopp's uniqueness, enabling efficient
collaboration, flexibility, and precision in data migration projects.

Mapping and Implementation

The mapping rules that govern the data migration must be specified and maintained. This task can be
undertaken in many ways. It is very common to use some kind of textual specification – as in Word

 6 Our Data Migration Framework

documents, Excel Worksheets, or likewise. In some respect, this makes good sense, as the users
producing these specifications must have deep knowledge of the data involved and notable the
business supported by these data. In many cases, these ‘business experts’ are more comfortable
producing the specifications in well-known applications such as Word or Excel.

Based on the specifications, a set of some kind of executables must be constructed (implemented) and
maintained. It is common to task a team of developers with writing a system of programs to execute the
data migration in accordance with the specifications. Historically using some sort of third-generation
programming language but recently it is more and more common to leverage the capabilities of one of
the many powerful ETL tools out there.

The tools commonly used for the specifications lack support for cross-referencing or validation of the
consistency of the mapping being produced. At the very best, inconsistencies can lead to difficult
communication and wasted effort when implementing the specifications. Worse scenarios are that
inconsistencies of this kind remain undiscovered or are discovered late in the lifetime of the data
migration project, making them complicated, expensive and risky to correct.

Regardless of the toolset chosen for the specification and the implementation, these tasks remain a
very big and crucial part of any data migration project. The success of any data migration is directly
linked to the quality of the specifications and how they are translated into the executables performing
the actual data migration. This is underlined by the fact that the specifications often grow to significant
size and complexity. It is difficult to maintain validity and coherence in the specifications themselves.

Additionally, in many cases, it proves impossible over time to maintain complete fidelity in the
consistency between the specifications and the executables. As the migration project progresses and
deadlines approach, there is a severe risk that specifications are left behind while the implementations
are modified directly. Very often, the effort invested in the specifications are rendered valueless as the
specifications drift further and further behind the reality implemented in the executables.

Finally, it is a common consequence that – as the complexity of the implementation grows –
requirements and/or wishes put forward by the business experts in charge of the mapping are rejected
by the team in charge of the implementation, due to earlier implementation choices based on earlier
specifications.

A key component of hopp is Studio. This is a dedicated, multiuser productivity application providing a
comprehensive and consistent interface to produce the mapping. Using Studio, a team of business
experts can collaborate to produce the mapping for the executables.

Studio contains rich cross-reference and cross-validation functionality to ensure a very high degree of
endurable consistency and coherence in the mapping. Most importantly, Studio facilitates and enforces
mapping of an extremely structured nature. In fact, the specifications are so structured that they serve
as input to a code generator that generates the migration executables.

The structured specifications and the generated code is a key quality of hopp. The benefits are
significant:

• Complete guarantee of consistency between the mapping and the actual executable at
all times

• Ever increasing quality of the mapping over time as it is reused from project to project

 7 Our Data Migration Framework

• The specification is the implementation. The quality of the generated code is such that
it is never manually retouched. There is no longer any implementation process or
indeed any implementation team

• The business expert is empowered and in charge. Modifications to the specifications
done by the business exports directly modify the generated executable

In the context of data migration, the formulation and maintenance of mapping rules are of paramount
importance. This task can be approached through various methods, with a common practice being the
creation of textual specifications, often using tools like Word documents or Excel worksheets. This
approach aligns well with the fact that the individuals responsible for crafting these specifications
typically possess profound insights into the data and the associated business processes. Many of these
"business experts" feel more at ease utilizing familiar applications like Word or Excel for this purpose.

Subsequently, based on these specifications, a set of executable components must be developed and
upheld. Traditionally, this entailed enlisting a team of developers to code a suite of programs that would
execute the data migration as specified. Historically, these programs were coded using third-generation
programming languages, but in recent times, there has been an increasing trend toward harnessing the
capabilities of powerful ETL (Extract, Transform, Load) tools available in the market.

However, the tools conventionally used for creating these specifications often lack built-in support for
cross-referencing or validation to ensure the consistency of the mapping. At best, inconsistencies may
result in challenging communication and wasted effort during implementation. In more adverse
scenarios, these inconsistencies may remain undetected until later stages of the data migration project,
making rectification complicated, costly, and risky.

Irrespective of the chosen toolset for specification and implementation, these tasks constitute a
substantial and critical segment of any data migration endeavor. The success of such projects hinges
directly on the quality of the specifications and their faithful translation into executable components
responsible for the actual data migration. This is underscored by the fact that specifications often grow
in size and complexity over time, making it challenging to maintain their validity and coherence.

Furthermore, as migration projects progress and deadlines loom, maintaining complete alignment
between specifications and executables becomes increasingly difficult. Specifications may lag behind
while implementations are adjusted directly. Often, the effort invested in crafting specifications
becomes futile as they deviate further from the realities implemented in the executables.

Another common consequence is that, as implementation complexity increases, requirements or
preferences voiced by the business experts responsible for mapping may be rejected by the
implementation team due to prior decisions based on earlier specifications.

A pivotal component of Hopp is the "Studio." This dedicated, multiuser productivity application offers a
comprehensive and standardized interface for creating mapping specifications collaboratively. With
Studio, a team of business experts can work together to produce the mapping for the executable
components.

Studio boasts robust cross-referencing and cross-validation capabilities, ensuring a high degree of
enduring consistency and coherence in the mapping. Most importantly, Studio promotes and enforces

 8 Our Data Migration Framework

the creation of highly structured mapping specifications. These structured specifications serve as input
to a code generator that automatically produces the migration executables.

The structured specifications and the generated code constitute a cornerstone of Hopp, yielding
substantial benefits, including:

Consistency Assurance A guarantee of unwavering consistency between the mapping and the
actual executable components is maintained at all times.

Specifications as
Implementation

Over time, the mapping quality improves as it is reused across multiple
projects.

Specifications as
Implementation

The generated code is of such quality that manual adjustments are
unnecessary. This obviates the need for a separate implementation
process or team.

Empowerment of
Business Experts

Business experts have direct control and authority over the specifications,
as modifications made by them directly impact the generated executables.

In essence, Hopp's Studio streamlines and enhances the mapping and implementation processes,
ensuring enduring quality and alignment between specifications and execution in data migration
projects.

Execution and In-time Assessment

Once the executables to perform the data migration have been specified and developed, they must be
put to work in an execution context to migrate the data. During execution, events will occur that needs
to be documented. Some events are benign and of purely informational character, while other events to
some extent may invalidate the migration results. In the latter case, it may be necessary to go back,
perform some correctional measures, and re-iterate the parts of the migration that were invalidated.

A key concern in any migration project is the way this type of re-iteration is done. Aggravating the
problem is the probable presence of dependencies in the data. As an example: If the problem at hand
raised the need for a set of Accounts to be re-iterated, this may very well result in the need for a
recursive re-iteration of data dependent on these Accounts.

A worst-case scenario is an execution structure bringing the entire mass of data forward in a waterfall,
batch-like process of steps. In this case, it can be difficult or even impossible to separate the data
relevant to the events in question, in effect forcing a complete iteration of the total migration. A complete
re-iteration may be problematic if there is limited time available. In addition, it may introduce

 9 Our Data Migration Framework

unnecessary risks, as data not affected by the problems at hand nevertheless is included in the re-
iteration.

The business object approach of hopp renders it completely trivial to point out a precise subset of
business objects to be re-iterated. In addition, the integral handling of dependencies between business
objects points out the dependent business objects that need to be re-iterated as a consequence. In fact,
the hopp runtime can automatically resolve dependencies and recursively re-iterate all dependent
business objects.

Another key concern is at what time in the migration execution information concerning the quality of the
migration result surfaces. If this information surfaces late, time is lost. In addition, a greater part of the
migration may need to be iterated in terms of dependent data than if the information was available
immediately when the problem occurred.

In many migration solutions, events occurring during the migration execution do not surface until a part
of the migration actively aggregates and surfaces the information in some way. Delays of this kind may
introduce unnecessary risks.

It is common that severe problems surface indeed very late - even after the migration as such is finished
and has delivered the migrated data. This is the case if the migrated data is erroneous in a way that went
unnoticed in the migration but nevertheless renders it impossible to place the data in the target system.

Hopp meets these concerns in two ways. On one hand the framework surfaces events real-time as the
migration executes, there is no unnecessary delay at all. In this way – in case of serious events – the
migration execution may be immediately paused, the causing problem corrected, surgical re-iteration of
affected business objects executed, and the overall migration execution resumed, with minimal risk and
loss of time.

On the other hand, hopp contains rich support for integral runtime validation as part of the migration,
making it possible to implement validation rules uncovering problems that would arise when placing the
migrated data in the target system. In this way, the framework is able to surface this kind of problem as
events – early and real-time as all other events.

The inherent, iterative nature of the entire framework migration process results in the constant
improvements of these validation rules over the lifetime of a migration project greatly enhancing the
overall quality of the target data resulting from the migration. In scenarios where hopp is used
repeatedly in different projects migrating to the same target system, the number and quality of these
validation rules will continue to grow and improve even between projects.

Once the executable components for executing the data migration have been defined and developed,
they must be deployed in an execution context to commence the data migration process. During this
execution phase, various events will occur that require documentation. These events can range from
benign, providing purely informational insights, to more critical events that may, to some extent,
invalidate the migration results. In the latter case, it becomes necessary to backtrack, implement
corrective measures, and reiterate the parts of the migration process that were affected.

A pivotal concern in any migration project revolves around the methodology employed for such re-
iteration. Complicating matters is the likelihood of data dependencies. For example, if an issue
necessitates the re-iteration of a set of Accounts, it may, in turn, trigger a recursive re-iteration of data
linked to these Accounts.

 10 Our Data Migration Framework

A worst-case scenario involves an execution structure that advances the entire dataset through a
waterfall-like batch process of steps. In such cases, it can be challenging or even impossible to isolate
the data pertinent to the specific events in question. This situation effectively mandates a
comprehensive re-iteration of the entire migration process. Performing a complete re-iteration can pose
challenges when time constraints are tight and may introduce unnecessary risks, as unaffected data is
also included in the re-iteration.

Hopp's business object approach simplifies the identification of a precise subset of business objects for
re-iteration. Moreover, its handling of dependencies between business objects automatically identifies
dependent objects that need re-iteration. The Hopp runtime can efficiently resolve these dependencies
and recursively re-iterate all affected business objects.

Another critical concern is when information regarding the quality of the migration outcome becomes
available during the execution. Delayed information retrieval can lead to time wastage and necessitate
more extensive re-iteration involving dependent data, compared to having immediate access to
information when the problem arises.

In many migration solutions, events occurring during migration execution do not surface until a specific
stage in the process actively aggregates and presents the information. Such delays may introduce
avoidable risks. Severe problems can sometimes surface very late in the process, even after the
migration itself is considered complete. This can occur if the migrated data contains errors that went
unnoticed during migration but prevent the data from being correctly integrated into the target system.

Hopp addresses these concerns through two core mechanisms:

Real-time Event
Handling

Hopp surfaces events in real-time as the migration progresses, eliminating
unnecessary delays. In cases of critical events, the migration can be
promptly paused, the issue corrected, surgical re-iteration of affected
business objects executed, and overall migration execution resumed with
minimal risk and time loss.

Integral Runtime
Validation

Hopp offers robust support for runtime validation as an integral part of the
migration process. This allows the implementation of validation rules that
can detect issues that may arise when integrating the migrated data into
the target system. The framework can surface these problems as events in
real-time, ensuring early identification.

The iterative nature of the entire Hopp migration process leads to continuous improvements in these
validation rules throughout the project's lifespan. This iterative approach significantly enhances the
overall quality of the target data resulting from the migration. In scenarios where Hopp is deployed
across various projects migrating to the same target system, the number and quality of these validation
rules continue to grow and improve, even between projects.

 11 Our Data Migration Framework

3. Migration Framework Components

Hopp is made of a set of linked and collaborating components. Each component is a feature-rich
application and the combined suite of components provides a complete foundation and support for all
aspects of the data migration process.

Studio Studio is a Windows productivity application used to create the mapping.

Studio supports and enforces highly structured specifications.

In addition, Studio contains extensive cross-referencing and reporting
functionality, significantly improving the overall understanding and
overview of the mapping.

Finally, Studio validates the mapping, clearly reporting any errors and
inconsistencies that in turn would cause incorrect or invalid data migration
results.

Core Studio exports the entire mapping in a format usable by the Core Code
Gen to generate the program code to execute the data migration.

The Core as such contains the code generators generating the engine
code as well as base class libraries containing common, supporting
functionality for the generated code.

While the code generators will generate by far most of the code necessary
to execute the data migration, certain migration rules may be implemented
by hand. The generated code contains stubs for these rules making their
manual implementation straightforward.

While manual rule implementations are left alone (not overwritten) by the
code generator, any modifications in the mapping that in turn modify the
interface for a manual rule implementation will be instantly discovered at
compile time.

The quality of the generated code is such that it is never manually
retouched. While situations certainly occur where the generated code does
not produce the desired migration results, these situations are invariably
corrected by modifying the mapping and generating the code again.

Portal Operations The Core Runtime is the execution framework that uses the generated
engines to execute the data migration. Its UI is fully integrated into the
Portal component. Through the Portal Operations interface, the user loads

 12 Our Data Migration Framework

source data, populates value sets, executes the data migration and
offloads the target data produced by the generated engines.

Using the Portal Operations, it is possible to iterate over the data migration
in a very fine-grained manner. It is possible to iterate all business objects
that generated a specific event during migration, to iterate a specific
business object, etc.

In addition, the Core Runtime supports the operation and execution of
multiple data migration projects across a host of different servers.

Portal The Portal application surfaces the results of a data migration iteration in a
web-based interface. These results consist of:

• All events produced

• The data for all business objects used and produced by
the iteration

• Deltas showing the differences between iterations

In addition to the passive presentation of the results, the Portal contains
rich workflow functionality allowing the involved users to manage
responsibility, comments, and state (accepted, fixed, etc.) for all events.

Studio: Producing the mapping

A fundamental element in any data migration scenario is the way it is specified how to migrate the
source data to the target data.

The success of any data migration is directly linked to the quality of this specification and how it is
translated into the executable that performs the actual data migration. This is only underlined by the fact
that this specification often grows to enormous size and complexity. It is difficult to maintain validity and
coherence in the specification itself. Most importantly: In many cases, it proves impossible to maintain
complete fidelity in the consistency between the specification and the executable.

A key component in Hopp is Studio. This is a dedicated multiuser productivity application providing a
complete and consistent interface to produce the mapping. Using Studio, a team of users can
collaborate to produce the mapping for the framework executables.

Studio contains rich cross-reference and cross-validation functionality to ensure a very high degree of
consistency and coherence in the mapping. Most importantly, Studio enforces mapping of an extremely
structured nature. The specifications are so structured that they serve as input to a code generator that
generates the migration executables.

 13 Our Data Migration Framework

It is a key quality of Hopp that the consistency between the mapping and the actual executable is
inherently guaranteed.

In any data migration process, the specification detailing the transformation of source data to target
data is crucial. The success of the migration hinges on the accuracy and quality of this specification,
and its subsequent translation into the executable tasked with carrying out the migration. Given that
these specifications can become large and intricate, maintaining their validity, coherence, and
alignment with the executable is a challenge.

Hopp's "Studio" is a pivotal tool designed to address this challenge. As a multi-user productivity
application, Studio offers a comprehensive and consistent interface to create these data mappings.
With Studio:

Collaborative Design Teams can collaboratively work to design data mappings suited for the
framework's executables.

Cross-referencing and
Validation

The application includes robust cross-referencing and validation
capabilities, ensuring mapping consistency and coherence.

Structured Mapping Studio emphasizes mappings that are highly structured. Such structured
specifications serve as inputs to a code generator, producing the migration
executables directly.

A standout feature of Hopp is the inherent guarantee of alignment between the data mapping and the
resulting executable, eliminating discrepancies and ensuring successful data migration.

Collaboration

Studio is a Windows application running locally on a PC or laptop. The mapping produced by Studio is a
collection of (xml) files residing locally on the user’s machine.

While this enables an individual user to work on a given mapping locally on his/her Windows machine,
Studio can be backed by a central repository (a SQL Server database). The repository provides the
functionality necessary for a team to collaborate on the same mapping (checkout, check-in and get-
latest).

The investment in the mapping can be safeguarded by implementing a suitable backup scheme using
the given facilities in SQL Server.

 14 Our Data Migration Framework

Studio is a Windows-based application tailored for execution on personal computers or laptops.
Internally, it processes mappings as a set of XML files stored on the local user's device.

While the design enables users to engage with mappings on their individual Windows platforms, Studio
can seamlessly interface with a centralized SQL Server database, serving as its repository. This central
repository is equipped with collaboration tools facilitating:

Version Control Facilitates functionalities such as checking out, checking in, and retrieving
the latest versions of mapping files.

Collaboration Provides an infrastructure where multiple users can collectively work on a
shared mapping.

To protect the accumulated work and effort invested in the mappings, it's prudent to incorporate an
appropriate backup strategy. The inherent utilities within SQL Server can be harnessed to establish and
maintain a robust backup regimen, ensuring the preservation of mapping assets.

Mapping types

In the case of repeated data migrations from varying source systems to the same target system, a clear
separation must exist between the mapping for source data and the mapping for target data.

Using Studio, the mapping for any data migration is separated into two different mapping types ensuring
the highest degree of reuse of these specifications from migration project to migration project.

Target Map The Target Map is founded on the description of the Target data.

The Target Map eliminates internal references and data that can be derived
from other data and exposes the data that cannot be derived and thus
must be received. In addition, the Target Map can implement a wide host of
runtime validations to ensure the highest quality possible of the target data
being produced by the data migration.

The Target Map is strongly linked to the target system and this mapping
can be reused in all migrations to the same target system. The value of
improving/extending the Target Map is retained over time, from project to
project.

From Studio, it is possible to export the Target Map in two ways:

 15 Our Data Migration Framework

As an interface specification that can be imported into Studio when
working on the Source Map (see below)

As a complete, structured specification that serves as input for the engine
generator generating the target migration engine

Source Map The Source Map is based on both the source data descriptions as well as
the data requirements exposed by the Target Map.

While the target mapping exposes the data that must be received, it does
so in terms of the target system. In addition, all validation is founded on
value sets known by the target system.

On the other hand, the Source Map describes how - based on the source
data - to produce the data required by the target map.

Finally, the export can be exported from Studio as a complete, structured
specification as input for the code generator generating the export engine.

Quality tools

Mapping commonly grows to significant size and complexity. In many cases users need to
communicate around the specifications – for instance, users with knowledge of the target system may
need to communicate with users with knowledge of the source system.

The Studio application works as a frame around the different mapping types providing rich facilities
useable across the different mapping types.

Cross-reference Studio provides where-used, cross-referencing capabilities. These
capabilities are useful as the mapping grow in size, providing support for
where-used analysis and a general control over complex mapping often
lacking in other specification tools.

Validation Using Studio any user can perform a complete validation of the
consistency of the mapping. Validation errors indicate that code generation
may fail or the generated code may fail to build.

 16 Our Data Migration Framework

For this reason, the validation is an integrated part of the workflow. In
addition, the validation in combination with the checkout/check-in
collaboration facilities provides support for what-if scenarios.

A user can check out an item (or any number of items), perform some
modification – for instance import a new version of the target data structure
- and then perform a validation. The validation report will give a good
indication of the impact of the changes, and in case of unforeseen
consequences for the consistency of the mapping, the user can simply
undo the previous checkout and revert to the previous state of the
mapping.

Reporting Studio provides a palette of reports common for all mapping types as well
as reports specific for each mapping type. The reports provide support for
communication with other users not in contact with Studio.

Using Studio, items can be annotated with descriptions and comments
adding value to extracted reports.

Hopp Core framework, Code generation, and manual rules

The Core contains the code generators generating the code to execute the migration. In addition, the
Core provides the base class libraries supporting the generated code.

Apart from supporting the generated code, the base class libraries also contain interface functionality
that enables the Core to discover the generated code and call it to perform the different steps in the
migration.

Based on the mapping the generated code automatically handles by far most of the migration logic.

In some cases, the mapping contains the information describing the interface to a manual rule that will
be called by the generated engine. In these cases, the generated code will contain a default
implementation of the rule. This default implementation will report an error event to the Core Runtime,
that this rule has not been implemented.

Visual Studio

Visual Studio is the state-of-the-art Integrated Development Environment (IDE) provided by Microsoft
to write and maintain .NET program code.

In practice, the generated code for a given mapping resides inside a folder in a normal Visual Studio c#
class library project.

 17 Our Data Migration Framework

Manual rules are implemented in this Visual Studio project by overriding a virtual method provided in the
generated code. This overriding method is specified manually in a separate file (using the partial class
mechanism in c#) protecting the manual implementation from being overwritten by the code generator.
This is a simple, well-known, mainline mechanism and the implementation of manual rules is indeed
very straightforward.

The best practice workflow when working with a combination of the mapping from Studio, the code
generator, Visual Studio, and finally the Core Runtime is quite simple and supported by extensions to
Visual Studio delivered as part of hopp:

Studio The latest version of the mapping is retrieved from the backing repository.
The mapping is then validated and published to a file.

Code generator The code generator is activated specifying the published file as input and
the correct Visual Studio folder as output. The code generator will generate
the code and place all generated files in the specified folder, where they
become a part of the Visual Studio project.

Visual Studio If necessary, manual rules are modified/implemented. Then the entire
Visual Studio class library project is built and deployed to a location
accessible by the Core.

Runtime The Runtime is reset, causing it to load the new version of the class library
containing the latest generated code and manual rule implementations

It is a key quality of Hopp that working through the points above is very fast – normally a few minutes.

The Core, Runtime, and the Execution environment

While the class libraries described above contain the generated code, the manual rule implementations,
the interfaces, and indeed all the bits and pieces necessary to migrate one business object, the Core
component is charged with the task of migrating all business objects by calling the engine interfaces
provided, one object at a time.

In addition, the Core Runtime is responsible for the housekeeping necessary to store all migration
results, intermediary results as well as all events occurring during migration, and finally all audit
information collected during the migration. It is the responsibility of the Core Runtime to keep track of
this information, even when the migration is iterated repeatedly and events and even items may appear,
reappear, and disappear.

 18 Our Data Migration Framework

The complete Core Runtime component consists of two main parts:

Core Runtime The runtime runs in a server setup and executes all the data migration
processing. The runtime runs jobs on a server, performing a multitude of
different tasks.

The most directly relevant jobs are for instance: Load Source Data,
Perform Export Step, Perform Transformation and Target Step, etc. But
there are many different job types that in combination make up all
functions necessary to run a data migration iteration from start to finish.

Portal Operations The Portal Operations is a Windows application that connects to the
server-based Core Runtime and enables a user to orchestrate the data
migration and initiate and monitor jobs as required.

While the collaboration and workflow around the mapping and the generated code takes place locally
on a personal machine, once the engine libraries have been deployed in the server environment of the
Core Runtime, the rest of the framework execution flow takes place in the Core Runtime and is
managed using the Portal Operations.

While the Core Runtime is executing migration jobs, the user monitoring the job execution may view the
events raised by the migration engine as they happen. In this way, it is possible to react quickly in case
of serious and invalidating events.

Runtime Environment

Normally, in a data migration setup of any significant size, the Core Runtime will run on one or more
dedicated servers. However, in a tiny setup, it is perfectly possible to establish and execute the Core
Runtime on a local machine as well.

A complete Core setup leveraging the full execution facilities of the Core includes the ability to
concurrently iterate over separate data migration projects in the Core setup.

In this full-scale scenario, the Core can execute several, isolated migration projects on one or more
dedicated servers in so-called Tracks. One server may host multiple tracks, and the Core can handle
multiple servers – each with multiple tracks.

Tracking, monitoring, and collaborating on events and results

The Portal web application presents the migration results and events. As a web application, it is easily
reachable by a wider audience, which may include users from the businesses involved in the migration.
The aggregations in the Portal application provide a comprehensive understanding of the overall quality
of the migration iteration including baseline comparisons that reveal trends since the last iteration.

In addition, the application surfaces detailed information for each migrated business object providing
rich support for the users to analyze the results and seek explanations for any issues.

Finally, the Portal provides collaboration functionality enabling the users to keep track of the state of
events (new, fixed, accepted, recurring, etc.), to comment on events, and to appoint some user to be
responsible for resolving the event.

 19 Our Data Migration Framework

For any type of business object, the application presents:

• how many business objects of this type have been migrated successfully and how
many were rejected during the migration

• an aggregation of the events that occurred for this type of business object

The application enables the user to search or drill down to any specific business object to view:

• the events that occurred for this business object

• links to any related business objects (ancestors and/or descendants)

• the data that were produced for each step in the migration process:

• the data extracted from the source system

• the intermediate result produced by the export engine

• the result produced by the target engine

Translation tables

A special section of the Portal surfaces value sets marked in the mapping as translation tables. This
enables users in the migration project (for instance users from the involved businesses) to provide the
content for these value sets, normally to provide translations of terms and values in the source system
to the target system.

An option is provided for functionality external to hopp to read these translation tables and to write back
a validation state (ok or faulty) combined with a validation message. This is useful to ensure that values
manually provided by users are correct in terms of the receiving target system.

In the Portal, there exists a designated subsection dedicated to presenting value sets annotated within
the mapping as translation tables. This feature facilitates stakeholders involved in the migration
process, such as business unit representatives, to populate these value sets, typically for translating
terminologies and values from the source system to the target system.

External Interaction - Hopp offers an interface allowing external functionalities to:

• Retrieve these translation tables.

• Append a validation status (either 'ok' or 'faulty') in conjunction with an explanatory
validation message.

Validation Mechanism - This interaction capability ensures that user-provided values align with the
expectations and requirements of the target system, preserving data fidelity during the migration
process.

 20 Our Data Migration Framework

Configuration Sample

The entire Migration Framework can be implemented and run on one, single machine – even a laptop.
This can be useful for demonstration and prototyping and similar purposes. However, in any context
involving larger amounts of data, many different users and maybe even many separate migration
projects running in parallel, hopp can scale up to a more elaborate setup.

A sample Migration Framework configuration may look like this:

Business PC/tablet
• Web browser

Master Server
Master Databases
Internet Information Services

Execution Server
Director Runtime
1 to N Tracks

Track 1
Track Databases
Folder Structure

Track 2
Track Databases
Folder Structure

Track N
Track Databases
Folder Structure

Project PC
• Mapping Studio
• Code generators
• Visual Studio
• Director Client
• Web browser

• Users directly working on the migration project have a Project PC with these local
installations.

• Studio so they can collaborate on the mapping. Users all connect the Studio to the
same Mapping Repository Database residing on a Master Server.

• The Code generators so they can get the latest version of the mapping, publish it from
Studio, and use the code generator to generate new engine code.

• Visual Studio to implement manual rules and build and deploy migration engines in the
runtime environment.

• The Portal Operations to initiate and monitor jobs in the Core Runtime.

• A Web browser to view the migration events and results and to collaborate on these.

• Users working outside the migration project, typically involved in the testing and quality
assurance, only need a web browser to view the migration events and results and to
collaborate on these.

 21 Our Data Migration Framework

• A single Master Server typically contains the database serving as the repository for the
Studio and the Master Database of the Core Runtime, containing housekeeping of all
Execution Servers and Tracks. The Master Server also hosts the Tracking web
application on an Internet Information Server instance.

• One or more Execution Servers contain the Core Runtime libraries and Services as
well as the databases and folders necessary to run migration iterations for separate
migration projects in one or more Tracks. One Execution server may be allocated to
serve as the Master Server as well.

A Track

A given track is a container for all the artifacts necessary to execute data migration iterations for one
project:

• An application repository: A folder containing the engine libraries deployed as a result
of the code generation.

• A Staging database: A SQL Server database containing (generated) tables and SQL
functionality (generated stored procedures) used by the generated source engine to
produce the export result.

• A Runtime database: A SQL Server database used by the Core Runtime to store the
intermediate and results of the data migration as well as the events that occurred for
each business object.

To keep track of all this, the Runtime also includes a Master database containing all information
necessary for the Runtime to manage all the tracks:

• Which migration projects are executing in which tracks

• Folder locations for the track

• Database connection strings for the track

• Etc.

Mapping flow and Execution flow

When working on the mapping in Studio, the Target Map is the starting point. From the Target Map, an
interface specification can be published and imported into the Source Map.

Put in another way, the Target Map exposes the requirements of the data the target expects to receive
from the Source Map.

 22 Our Data Migration Framework

Target MapSource Map

Target D
ata

So
u

rce D
ata

In
terface D

ata

Execution flow

Specification flow

When on the other hand the generated engines are executed by the Core Runtime, the actual data
being migrated flows in the opposite direction. It is extracted from the source data by the source engine
and the export result is passed to the target engine. The target engine produces the final target data.

Note that the process of publishing and importing from one specification to another, from the Target
Map to the Source Map, is very fast. Flowing through all the steps from a modification in the Target Map,
through the step of publish/import, and finally, generation and deployment of new engines rarely takes
more than a few minutes.

Mapping semantics

Specifying the mapping rules for any data migration is complicated. The specifications tend to grow
indeed very big, there is a myriad of dependencies, and users producing the specifications normally
need deep and comprehensive knowledge of the business behind the data being migrated.

While there is no silver bullet to eliminate these factors, Hopp and especially the Studio productivity
applications provide complete support for the users to keep on top of the volume and complexity as the
migration project progresses, facilitating the production and maintenance of mapping of high and
durable quality.

This section is a high-level outline of how the semantics in Studio provide a foundation for highly
structured specifications while all the same enabling the flexibility and openness to absorb the
peculiarities and specialties that invariably exist in any real-world data migration scenario. Studio is a
rich application and for each mapping type there is of course a myriad of details. This section aims to
give a basic idea of the three different mapping project types, their areas of responsibility and how they
connect and collaborate.

Common elements

While the two project types (Source Map and Target Map) are different in nature, they do use a common
set of elements. Because of this, Studio interface remains consistent across the two project types, and
manual rule implementation is completely similar.

Constants

A constant is a value and a given data type that can be used everywhere in the mapping. Constants
come in two flavors:

 23 Our Data Migration Framework

• Constant: The value for the constant is provided in Studio and this value is typically
incorporated in the generated code as a literal value.

• Parameter: The value for the constant is not incorporated in the generated code, but
provided through the Portal Operations interface. Thus, the value may change between
iterations.

Value sets

A value set is a table of data organized in columns and rows. Using Studio, the user defines the columns
of the value set, giving their names and data types. Once defined, a value set is used by rules to look up
values or – in the case of manually implemented rules – in any way needed.

Value sets come in three flavors:

• A static value set: The user populates the value set by typing values directly in Studio.

• A dynamic value set: The value set is populated by the Core Runtime using parameters
specified for the value set in Studio. By default, the Core Runtime can read value sets
from Excel worksheets, but an extension point is available to implement context-
specific value set providers (for instance reading values from the target system).

• A translation value set: The value set is automatically shown in the Portal Web
Application enabling external users to populate the value set.

Rules and Flags

Rules are used throughout the mapping in Studio in many different contexts. No matter the context, any
rule is defined in Studio by specifying the data type of its return value and name plus data type for each
of parameters to be passed to the rule.

Of special interest is that for any rule zero or more flags may be defined – each flag a way for the rule to
notify the hopp runtime that it encountered some relevant situation. The flags in combination with
Events (see below) is the way the hopp framework decouples the implementation from the invocation
context of a given rule. A rule may be invoked in different contexts, each reacting differently to the flags
raised by the rule.

Rules are used extensively throughout the mapping, performing a variety of different tasks. For
instance:

• Validation rules: Validating input fields

• Mapping rules: Assigning values to output fields (note that in most instances field
values can be assigned without the use of mapping rules using other facilities in Studio)

• Condition rule: Deciding whether a certain sub-element should be processed or not

• Exit rules: Typically, cross-validating a business object at the point it is completed

 24 Our Data Migration Framework

• Etc.

Rules come in two flavors:

• Lookup rules: A rule that uses one or more parameters to look up and return a value
from a value set (see above). Rules of this kind are automatically generated by the
code generator, no manual implementation is necessary

• Manual rules: The code generator creates a virtual method to be manually
implemented in Visual Studio as described above

Events

Using Studio, users can define User Events to be fired when a rule raises a flag. A user event is basically
an event code combined with a message text. The message text can contain placeholders for context
specific values and can be supplied in multiple languages. If the message text contains placeholders, it
is possible to specify the values to be merged into the message text when the event is raised.

The user must specify a severity for the event, causing the framework to act accordingly if the event is
fired. The possible reactions are:

Reject Rejects the current root business object in its entirety

Reject Child Rejects the current child business object but not the entire root business
object

Error Nothing is rejected, but the migration result will introduce a (non-fatal)
error in the target system that must be rectified

Warning Nothing is rejected, but the migration result may introduce inconsistency
in the target system

Information Information of action taken by the migration. Data may be modified, or
new data introduced to improve quality

Whenever a rule (as defined above) is used in Studio, for instance, to provide the value for a field, the
user is presented with a panel to define which value to provide for each of the parameters for the rule.
The user can provide a literal value, reference a Constant, or provide other value types depending on
the exact context.

The panel also presents the user with all the possible flags that can be raised by the rule. At this point,
the user decides how the framework should react to each flag. One possible reaction is to reference a
User Event to be fired. A User Event is defined:

• Ignore: The flag is ignored; no event is fired and no action is taken

• User Event: The user can identify a User Event as described above. The severity
defined on the event will decide how the framework reacts

• System Event: The user decides that the nature of the flag in this context does not
merit a user event. In this case, the framework will generate a standard message text in

 25 Our Data Migration Framework

case the flag is raised. In this case, the user must also specify the severity of the
System Event

It is the events (User and System) fired in this manner that are collected by the Core Runtime, shown in
real-time when monitoring the migration and shown in the Tracking Web Application.

Target MAP

The Target Map is the starting point for all specifications. It is the responsibility of the Target Map to
ensure that the data produced by the migration is valid, and can be delivered to and accepted by the
target system without late-occurring errors. It is normally the most extensive of the two map types in
hopp but also the sole mapping to be reused, if the same target system over separate migration projects
may receive data from different source systems.

Starting a Target Map completely from scratch implies importing the specification of the target data
structures that the data migration should produce. These data structures can represent anything, for
instance, tables in a database, parameter lists, routine calls, etc.

It is the core purpose of the Target Map:

• to define how to produce data for these structures, when the migration executes

• to enforce runtime validations to ensure that the target data produced is acceptable by
the target system

In addition, it is the Target Map that creates the business object hierarchies that serve as a mainstay for
the entire specification, execution, and presentation of the migration result.

Developing the Target Map involves these main tasks (avoiding an abundance of detailed tasks):

• Manually define the hierarchies of business objects.

• For a given business object, point out the target system structures that this business
object will deliver data to

• For each target data structure, determine how to assign the value for each field in the
structure. Many ways exist to internally derive/calculate these values from other values
inside the target specification

• In the case a given value cannot be derived/calculated in any way, this value surfaces
as an upstream requirement for data to be received. This is done by manually create a
so-called External Field on the business object

• In some cases, values, can be retrieved from other, related business objects. In these
cases, it is possible to create relationships between business objects and use these
relationships to retrieve values. Relationships automatically evolve into execution
dependencies to be respected by the Core Runtime

 26 Our Data Migration Framework

The generated target engine contains the code to receive the exported data and call rules etc. as
specified to produce the target result.

Publishing the Target Map for import into a Source Map is in fact just publishing the hierarchies of
business objects with their external field requirements.

Source Map

The Source Map is built on two different inputs:

• The published data requirements from the Target Map

• The imported data structures from the source system

It is the core purpose of the Source Map to define how to meet the data requirements of the Target Map
using the data structures in the source system.

The business object hierarchies rooted in the target specification, with the alterations imposed by the
transformation specification, are presented in Studio. For each business object in the hierarchy, it must
be specified how the external fields of the business object will be assigned a value.

For this purpose, the Source Map contains an export-specific toolset. Source data structures can be
aggregated into views and these views and source tables themselves can be connected to business
objects to provide the data necessary.

The generated export engine resulting from the Source Map contains these main parts:

• A generated SQL Server database containing:

• A generated table for each source data structure

• For each view defined in the Source Map

o A generated table to contain the data for the view

o A generated stored procedure to populate the table with the data

• For each business object in the specification stored procedures to retrieve the source
data necessary to satisfy the data requirements for the business objects

o Generated code to execute the stored procedures to populate the views

o Generated code to execute the stored procedures to retrieve source data for the

business objects, call rules as specified, and populate the business objects with

field data to complete the export result.

 27 Our Data Migration Framework

Agile workflow

How does it all fit together in a workflow when a data migration project is underway? When do
modifications to the mapping take place concurrently with repeated migration iterations and ongoing
tests of the migration results in a target system setup? How does it even start up the first time Hopp is
put to the task in a new installation context?

From scratch, little by little

As outlined earlier in this document the mapping sits on top of each other. The Source Map sits on top
of the Target Map. This may give the impression that the entire target specification must be completed
before progressing to the Source Map. However, this impression is far from the truth.

The iterative nature of the entire framework makes it entirely feasible to proceed in a less daunting and
more efficient manner. The best practice is to start the Target Map of just one business object hierarchy
and even within this one just a minor part of the entire hierarchy. Moreover, quickly proceed to the
Source Map of the same, limited business object hierarchy.

In this way, it is very fast to start the iterative process of the entire framework. The framework calls for
this vertical approach where elements in the specification in an incremental fashion are added little by
little in Target and Source Maps. Due to the ease of iterating the entire process of migration
specification modifications, code generation, deployment, and execution, new areas can constantly
and seamlessly be added, and existing areas deepened and enhanced.

Up and running

Once a first limited business object has paved the way and a migration track is operational including the
tracking web application, the migration project is in process and the normal workflow is in fact in place.
This is an easy iterative flow involving the tasks shown below.

Mapping
specification

Code generation

Rule
implementation

DeploymentExecution

Result

Test and
Feedback

 28 Our Data Migration Framework

• Mapping is modified. New business objects may be added, existing business objects
may be modified. Mapping is published and imported upwards in the mapping type
chain as described. Modifications are constantly checked into the common mapping
repository

• New code is generated. A user gets the latest version of the mapping from the common
repository and publishes the generator input and runs the code generators

• New manual rules may be developed, and/or existing rules modified

• The engines are built and deployed in the Core Runtime environment

• The relevant track is reset so the new engines are loaded, and execution iterated as
needed. Either everything or cherry-picking business objects in one way or another

• The migration results and events are shown in the Portal

• Based on the tracking web application feedback flows back and results on
modifications to the mapping and the cycle repeats

This iterative workflow is typical. Moreover, it can be very fast. Not counting the time needed for
modifying mapping and manual rules, the inherent processes performed by Hopp to generate, build,
deploy, and execute can be measured in minutes.

It is common for a migration team to iterate the migration process in this manner many times daily.

Feedback and problem tracing

Feedback may be introduced into the workflow from several sources. Unexpected occurrences of
certain events may be shown in the Portal; a test in a target system test instance may uncover issues,
etc.

Hopp provides strong support for tracing problems, right from the event or problem in the target system,
through the data flowing through the migration steps and back to the area in the mapping in need of a
review.

This support is greatly enhanced by the concept of business objects:

• Events in the Portal and/or problems in the target system are directly related to a given
business object

• In the Portal, all information for any specific business object is easily located. This
information includes:

• All events that occurred during the migration

• All data for each of the migration steps (source data, export result, transformation
result and target result)

 29 Our Data Migration Framework

• For each of the migration steps the data is clearly organized in the same hierarchy of
child business objects as is defined in the mapping

In this manner, hopp and the partitioning of the entire mapping and execution flow in business objects
provide efficient means of analyzing problems and locating the exact area in the mapping in need of a
review.

Snapshots

While the above workflow enables the migration team to iterate to a very high degree, in many instances
it is relevant to freeze a snapshot of the data migration iteration at a certain point in time.

Typically, whenever the target data result is unloaded from Hopp and delivered to a test instance of the
target system, it is beneficial to freeze a snapshot exactly corresponding to the data that were offloaded
and delivered. When the target system test instance is then undergoing tests to verify the quality of the
migrated data, this snapshot can be used as described above to analyse and trace any problems
uncovered by these tests.

At the same time, iterations in the original can resume allowing the overall forward process of the entire
agile workflow – now including corrective actions fed back from the target system test instance.

A special case of this snapshot is when the migration project is finished and the migrated data are finally
delivered to the production instance of the target system. In this case, the snapshot may be kept for an
extended period. Analysis of any future issues in the target system may be significantly supported by
the knowledge of exactly what data was delivered by the migration project as well as all migration
events.

Freezing any migration snapshot in this manner is a simple matter of copying of the databases and
other artifacts that comprise the Core Runtime track used by the migration iterations for the project.

A generic framework in a specific context

Hopp generically approaches data migrations. However, the framework will always exist in a specific
installation context and must be able to function in this context. To bridge the gap, hopp comes with
several extension points to ease the development of context-specific extensions.

Most obvious are the extensions to load the data from the source system to be migrated and the
extensions to offload the resulting target data for delivery to the target system. From the perspective of
the generic framework, the migration starts when source data has been loaded into the generated
source tables of the export database. Similarly, the migration ends when the resulting target data has
been created and stored inside the Core Runtime.

However, from the global perspective of the migration project, this is hardly the entire path. Source data
must somehow arrive in the generated tables in the export database and the resulting target data
somehow be delivered from the Core Runtime to the target system.

Two important extension interfaces of the framework are the Load Extension Interface and the Offload
Extension Interface as illustrated below.

 30 Our Data Migration Framework

In
st

al
la

ti
o

n
 c

o
n

te
xt

Fr
am

ew
o

rk
Migration Engines

Generated Source Tables

Target Data Result

Load Extension Interface

Offload Extension Interface

Load Extension implementation

Offload Extension implementation

Source System

Target System

As a principle, tasks of implementing these extensions are part of deploying hopp in a given context.
However, some extensions are mandatory, and some are optional. For all mandatory extensions, the
framework does come with default extension implementations, allowing rapid initial deployment as well
as opening rich possibilities for deeper, proprietary integration.

Extension points

Below is a list of the most common extension points, as well as their default implementations and
examples of proprietary implementations.

Load Source
Data

Populates the generated source data tables in the export database.

Default implementation
Load from different files formats, such as

• Delimited

• Excel worksheet

• Fixed length

• Db2 textual unload

• Etc.

Proprietary implementation sample
Direct database to database insert or bulk load (if direct access to source system
database is possible).

 31 Our Data Migration Framework

Offload
Target Data

The framework holds the created target data for each business object as an XML
element. This XML element contains the child business object hierarchy – each
business object in the hierarchy contains all target data for this object.

This extension interface receives these XML documents to further process the target
data in the implementation context.

Default implementation
Offload to XML files. One XML file for each root business object. Each file contains a
copy of all the XML elements for the instances of the business object.

Proprietary implementation sample
If the target data structures represent rows to be inserted in a target database, it is
straightforward to implement an offload extension that shreds the target data xml to
one file per target table.

Import data
structures

This extension interface imports data structures into Studio to use as in the Source
Map or the Target Map.

Default implementation
Studio comes with a default extension to import source and target data structures
from an Excel spreadsheet.

Proprietary implementation sample
Functionality to read the data structure directly from the table schema in some
database management systems.

Populate
Value Sets

This extension interface is used to populate value sets with data.

Default implementation
Read data content from Excel spreadsheets.

Proprietary implementation sample
Functionality to read Value Set content directly from the target system.

Audit This extension interface – if present – is called by the Core Runtime for each business
object during migration. The interface permits the extension implementation to hand
back audit data for the Core Runtime to store.

Another part of the extension interface is called by the Core Runtime to hand over the
collected audit data.

Default implementation
None

Proprietary implementation sample
Commonly the audit data are used to reconciliate the migration results with an
expected result from some other data source.

Reject This extension interface – if present – is called by the Core Runtime for each root
business object rejected during the migration.

Default implementation
None

Proprietary implementation sample
Commonly an installation will implement this extension to perform some action for

 32 Our Data Migration Framework

rejected business objects. For instance, if the bank account is rejected it is
nonetheless imperative to place the balance on the account on some technical
account in the receiving bank.

There are other specialized extension interfaces outside the scope and detail of this document.

